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Abstract

The primary objective of this work is to model the growth and eventual failure of a craze fibril in a glassy polymer, starting from a

primitive fibril. Experimental investigations have shown that properties like the entanglement density of a polymer play a pivotal role in

determining whether macroscopic failure of a polymer occurs through crazing or shear yielding. Failure is seen to be related to the formation

of a soft ‘active zone’ at the craze-bulk interface, through disentanglement. The present work aims at explaining some of the experimental

findings about fibril growth and failure in glassy polymers on the basis of a continuum model of a craze with a constitutive model that

accounts for yield, network hardening and disentanglement. The results show that this approach is capable of providing explanations for

experimentally observed facts such as the propensity to crazing in polymers with low entanglement density and the linearity between the

stretch in a fibril and the maximum stretch of a molecular strand in the fibril.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A predominant fracture mechanism in polymeric

materials is crazing. Crazes are planar crack-like defects,

where the two faces of the craze are bridged by thin fibrils.

Upon application of stress, crazes widen, leading to

stretching of the bridging fibrils until eventual failure. The

fibrils render the craze some stress-bearing capabilities until

their breakdown leads to the formation of a crack. An

understanding of the craze widening and failure processes

is, therefore, important to gain insight into the mechanics of

fracture in these materials.

It is instructive at this stage to look at successive

idealisations of the craze structure as depicted by Estevez et

al. [12]. Fig. 1(a) is a schematic of a craze as an

interconnected structure of voids and polymer fibrils.

Though the load-carrying capacity of the craze stems

mainly from the ‘primary’ fibrils oriented normal to the

craze plane, it is now known that the cross-tie fibrils also

bear some amount of load (see, Ref. [9]). For our purpose,
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however, the cross-tie fibrils are ignored and the craze is

idealised as being bridged by a number of cylindrical fibrils,

Fig. 1(b). These fibrils again are of two types: primitive

fibrils close to the craze tip and much thinner, mature fibrils

spanning the rest of the craze. A further abstraction of the

craze structure involves ‘lumping’ the three-dimensional

physical picture of Fig. 1(b) into a so-called ‘cohesive zone’

(or cohesive surface) governed by a constitutive law

between the craze opening Dn and the normal traction sn

acting on its faces. This idea, as shown in Fig. 1(c), was used

by Estevez et al. [12] in the form of a cohesive zone model

for crazing under Mode I, plane strain conditions. The

success of such a model depends solely on the ability of the

assumed traction-separation law to mimic the actual

physical response of a craze to the same normal tractions.

Much of our current understanding of this physical

response is born out of detailed experimental investigations

into craze growth and failure done by Kramer and co-

workers (e.g. Refs. [10,15]). Particularly striking among

their findings is the fact that the volume fraction vf of the

mature fibrils remains constant over the length of the craze

(i.e. in the x1-direction in Fig. 1) at all cross-sections along

the fibrils (i.e. for all values of x2), except at the midriff

(x2x0), where the stretch in the fibril is found to be

significantly larger. It follows therefore that, under the
Polymer 46 (2005) 7504–7518
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Fig. 1. Schematic representation of (a) a real craze, (b) the idealisation of a craze according to Kramer and Berger [15] and (c) as discrete cohesive surfaces.
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assumption of incompressibility, the local stretch lZ1/vf is

also a constant. At any point on a fibril, along the x2
direction, the fibril diameter can be expressed as DZD0l

K1/2

in terms of the diameter D0 of a primitive fibril and hence, D

is a constant as well. The value of l has been inferred from

optical measurements of vf by Donald and Kramer [11]

along a craze fibril (i.e. in the x2-direction in Fig. 1) and was

found to be almost the same all along the length, except at

the midriff where it is generally significantly larger. The

stretch l, measured either at the midriff or elsewhere over

the fibril length, is in turn found to be directly proportional

to the maximum stretch lmax of a molecular strand between

entanglements. Moreover, since lmax is an indicator of the

entanglement density of the material, these findings suggest

that increasing the entanglement density is a viable way of

craze suppression. Indeed, it is found that materials with low

entanglement density are more prone to crazing than ones

with high entanglement density (see, Ref. [14]).

The quantity lmax also appears in constitutive models for

elastoviscoplasticity of glassy polymers, which according to

Ref. [13] can be idealized as a network of entangled long

molecules embedded in the flowing continuum. At large
strains, the network stretches considerably, leading to a

rather steep hardening regime. The hardening continues till

a limit stretch is reached, beyond which the material ‘locks’

in the sense that it no longer deforms plastically. The

material becomes almost rigid after locking and therefore

it’s stiffness is arbitrarily increased to five times that at zero

strain. The mechanical response of the network is governed

by two parameters: the density of molecular strands between

entanglements, n, and the number of statistical segments N

making up each strand. Their product, nN, represents the

number of monomers in a unit volume of the material. The

maximum stretch that a strand can undergo according to

standard non-Gaussian description is then given by

lmaxZ
ffiffiffiffi
N

p
. A continuum model of this type has been used

by Tijssens and Van der Giessen [21] to study the widening

of a craze, but it did not pick up the remarkable correlation

between the fibril stretch and lmax mentioned above.

The objective of this paper is to improve on this and build

a more physically realistic continuum description of the

widening and failure mechanisms of a craze fibril in a

amorphous glassy polymer. With this model in place, we

compute the overall response of a craze subject to an
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imposed widening. These results are then used to formulate

traction-separation laws to be used for cohesive zone

models of craze growth and failure in glassy polymers, in

the spirit of Estevez et al. [12].

This work can be considered a refinement on similar

earlier work by Argon et al. [2] and Boyce et al. [7]. Argon

et al. [2] have reported a Finite element analysis on the

drawing of peridically arranged craze tufts from a half space

using a elastic-rate independent plastic model of polymers.

Boyce et al. [7] has analysed the process of cold drawing of

a circular polymeric bar using a constitutive response

similar to what has been used in the present work. However,

the results of this analysis cannot be directly applied to the

mechanics of growth of a craze fibril because of two

reasons. Firstly, a craze represents an array of fibrils and it is

their collective response that a cohesive zone model for

crazing should hope to emulate. Secondly, neither Boyce

et al. [7] nor Argon et al. [2] have accounted for

disentanglement in their continuum models.
2. Continuum modeling of a craze fibril

Depending on the material, craze fibrils have dimensions

between a few and tens of nanometers. This raises the

question if a continuum model is applicable. The answer to

this question can only be given when the predictions of such

a model be compared to the results of a molecular length-

scale model. A necessary condition for the continuum

model to be applicable is that it represents the essential

physical phenomena. While we shall be interested mainly in

qualitative features here, we envision that the material

parameters appearing in the continuum model can, at some

point, be fitted to molecular-level properties.

Like in the continuum models of Refs. [15,16], the

pulling-in of fibril material from the bulk is described by a

model for flow. The already drawn fibrils, represented by the

pillars in the cartoon of Fig. 2, cause flow by high shear
Fig. 2. Schematic showing the geome
stresses in what Kramer and Berger [15] called the ‘active

zone’ connecting adjacent fibrils. The particular model we

adopt here is similar to that used by Ref. [21], which is based

on formulations by Refs. [8,22], but extended to account for

disentanglement inside this active zone. The model is

motivated by the following considerations.

Kramer and Berger [15] have suggested that a certain

amount of ‘geometrically necessary’ strand loss accom-

panies craze growth. Berger [5] attributed this to loss of

entangled strands from the polymer network. This loss

occurs primarily from the strain-softened boundary between

the isotropic polymer bulk and the highly oriented craze

fibrils. In fact, Berger and Sauer [6] have demonstrated that

the mobility of polymer chains in the craze can be many

times higher than a bulk polymer even at temperatures well

below the glass transition temperature, making chain pull-

out from the network a possibility even at these low

temperatures. In addition to the active zone being softer than

undisturbed bulk material, it has been observed by Berger

[5] that the failure of a craze almost always starts from this

craze-bulk interphase in the form of a pear-shaped void.

Termonia and Smith [19,20] have proposed a Monte-

Carlo based lattice model for the deformation of a polymer

sample. More recently, Baljon and Robbins [4] have

performed molecular simulations on detailed atomistic

models of crazes. Both these simulations have underlined

the role of chain scission and pull-out (by reptation) of

polymer chains on the overall stress–strain response of the

craze fibril. But, the constitutive models of Refs. [8,22]

consider the entanglement density to remain unchanged

during deformation. This needs modification in order that

strain-softening due to strand loss can be taken into account,

as will be presented in Section 3.

Further, simplifications to the already idealized picture of

a widening craze in Fig. 1(b) lead to a unit cell model for the

fibril (Section 4). Results for this model are then presented

in Section 5, and discussed in the light of experimental facts

in Section 6.
try of the craze bulk interface.
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3. Constitutive law for glassy polymers

The constitutive model was originally proposed by

Boyce [8] and later modified by Wu and van der Giessen

[22]. The actual form adopted here, as well as the numerical

integration scheme used in the calculations have been

presented by Wu and van der Giessen [23]. Appropriate

modifications to include stress-induced loss of entanglement

points are discussed subsequently. The constitutive model

starts by assuming that under isothermal conditions the

elastic response for small elastic strains can be formulated in

terms of the following rate equation for the Cauchy stress

tensor s:

s
V
ZLe : De (1)

where s
V
is the Jaumann stress rate, De is the elastic part of

the strain rate tensor D, DZDeCDp, andLe is the tensor of

elastic moduli given in the usual way in terms of Young’s

modulus E and Poisson’s ration n by

Le
ijkl Z

E

2ð1CnÞ
ðdikdjl CdildjkÞC

2n

1K2n
dijdkl

� �
(2)

The plastic strain-rate tensor Dp is defined, under the

assumption that rate-dependent yield in amorphous poly-

mers is an isotropic process, through

Dp Z
_gpffiffiffi
2

p
�t
�s; �tZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�s0 : �s0

r
; _gp Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp : Dp

p
(3)

with ( ) 0 denoting the deviatoric part of the driving stress

tensor. The driving stress tensor itself is defined as
�sZsKb, where b is the back stress tensor due to

orientation hardening. Viscoplastic flow is described by

taking the equivalent plastic shear rate _gp in (3) be governed

by the equivalent shear stress �t according to Argon’s [1]

expression

_gp Z _g0exp K
As0
T

1K
�t

sy

� �5=6
( )" #

(4)

Here, _g0 and A are material parameters and T is the absolute

temperature. The quantity syZsCap is the pressure (p)

dependent athermal shear strength, with a the pressure

sensitivity. The strain softening upon yield exhibited by

amorphous polymers is taken into account by letting the

quantity s evolve according to

s Z h
1Ks

sss

� �
_gp (5)

with h the initial softening modulus and sss the ultimate

minimal shear strength [8].

The progressive hardening of a glassy polymer after

yield is due to the deformation induced molecular

orientation along the plastic stretch direction and is

incorporated through the back stress b in the driving stress

�t, see Eq. (3). The description of this hardening makes use
of the analogy with the stretching of the cross-linked

network in rubbers (cf. Ref. [8]). Neglecting the elastic

strains, the constitutive equations for the back stress tensor b

are formulated through a functional description of its

principal components ba on the unit principal directions

ea of the left stretch tensor, in terms of the corresponding

principal stretches la, i.e.

bZ
X
a

baðea5eaÞ; ba Z baðlbÞ

Here, to avoid confusion, principal tensor components and

the corresponding eigenvectors are denoted with Greek

indices, for which the summation convention is not implied.

The constitutive model used here, was proposed by Ref. [22]

on the basis of their description of the fully three-

dimensional orientation distribution of molecular chains in

a non-Gaussian network. They showed that their numerical

computations for such a network can be captured very

accurately by the following combination of the classical

three-chain network description and the eight-chain model

due to Arruda and Boyce [3]:

ba Z ð1KrÞb3Kch
a Crb8Kch

a (6)

with the weighting factor r being determined by the

maximum plastic stretch �lZmaxðl1; l2; l3Þ through

rZ0:85 �l=
ffiffiffiffi
N

p
. Here, N is the average number of links in a

molecular chain between entanglements (or cross-links in a

rubber), which determines the limit stretch lmax of a chain as

lmaxZ
ffiffiffiffi
N

p
. The principal back stress components b3Kch

a and

b8Kch
a are given by

b3Kch
a Z

1

3
CR

ffiffiffiffi
N

p
laL

K1 laffiffiffiffi
N

p

� �
(7)

b8Kch
a Z

1

3
CR

ffiffiffiffi
N

p l2a

lc

LK1 lcffiffiffiffi
N

p

� �
; l

2
c Z

1

3

X3
bZ1

l
2
b (8)

whereL is the Langevin functionLðbÞZcoth bK1=b. The

material constant CR in (7) and (8) governs the initial

hardening modulus in shear. When the value of either �l or lc
approaches lmax, the hardening rate increases dramatically,

thereby effectively suppressing all further plastic flow, and

the network locks. In the calculations, when either la or lc
exceeds 0.99lmax, the network is ‘locked’ and no further

viscoplastic flow is allowed. Fig. 3 shows the typical true

stress-true strain response of a glassy polymer in uniaxial

tension according to the above model. The stretch at which

the material ‘locks’ is indicated by a dot. Though a

qualitative analysis of crazing is being attempted in this

work, the material parameters used are representative for

polycarbonate (PC) and are given in Table 1.

The entanglement density enters the above constitutive

law through the hardening parameters N and CR, which can

be expressed as CRZnkT in terms of the density of

molecular strands between entanglement points n (k is

Boltzmann’s constant and T is temperature). Loss of



Fig. 3. Uniaxial stress (s/s0) vs. strain (3) response of polycarbonate (PC) in tension. The ‘locked’ state is shown by a solid dot.
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entanglements, and therefore loss of the number of strands,

would lead to a decrease of n. The quantity nN remains

constant since the molecular weight of the polymer is

unchanged. The analyses done in this work will be in the

spirit of the experiments of Henkee and Kramer [14] where,

to study the effect of strand density on crazing, polystyrene

films of a fixed molecular weight were crosslinked to

produce various network strand densities by electron

irradiation. Also, Termonia and Smith [20] looked at the

effect of the entanglement spacing alone on the deformation

behaviour of polymers. Strand loss through disentanglement

has been modelled by Refs. [19,20] in the framework of a

Monte-Carlo simulation of a two-dimensional entangled

network of polymer chains. The basic assumption in their

model is that slippage of molecular chains through an

entanglement point takes place when the forces on two

strands of the chain connected to an entanglement point are

different. In a time interval tthZ1/nth, where nth is the

frequency of thermal vibrations of an atom, the probability

that a particular strand slips through an entanglement point

is given by

p0 Z exp K
U0 KbDbeq

kT

� �
(9)

Hence the number of slip events taking place per second is

simply p0nthZp0/tth. In the above equation, U0 is the

activation energy, b is the activation volume (i.e. the

volume occupied by the segments of the chain which have
Table 1

Material parameters used for the glassy polymer represented in Fig. 3, resemblin

E/s0 n sss/s0 As0/T h

9.38 0.38 0.79 79.21 5
to be moved in each slip event) and Dbeq is the difference in

network stress between two strands of the same chain

connected to a common entanglement point. Termonia and

Smith [19,20] suggest that a slip event should be defined as

the coordinated movement of one or two statistical segments

and hence the activation volume b for such a slip event

should be of the order of (5–10 Å)3. The presence of Dbeq in

the Eq. (9) expresses the idea that the probability of a slip

event is high in a region where there is steep variation of the

stress over distances comparable to the length of a strand.

Several slip events on the same molecular chain would

result in it being drawn out of an entanglement point. If all

the chains connected to the same entanglement point are

drawn out, the entanglement point would cease to exist. So,

disentanglement would in general be more infrequent

compared to slippage but it seems reasonable to assume

that the probability that a particular entanglement point

vanishes in a small time interval t is still given by the form

(9), but with different parameters as will be discussed later.

Loss of entanglement points would lead to longer chains and

lower strand density n. As n is a measure of and linearly

related to the entanglement density, disentanglement can be

modelled by assuming that the strand density n evolves with

time, t, as
vn

vt
ZKn

p0

t
(10)
g PC at room temperature

/s0 a N CR/s0

.15 0.08 2.8 0.13
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where p0/t should now be interpreted as the rate at which

entanglement points disappear per unit volume.

Two additional assumptions are made at this stage.

Firstly, we will use a stress measure beq instead of a stress

difference Dbeq with the additional restriction that (10) is

meaningful when applied only to regions where a high stress

gradient is expected to exist. The stress measure that we

have chosen to use is the equivalent network back stress

defined by beqZ
ffiffi
1
2

p
b$b, cf. Eq. (3). The spherical symmetry

of this measure is motivated by the observation that, in a

continuum view, the difference in network stress between

two strands is averaged out over the entire network sample

that a continuum point represents. The second assumption

concerns the choice of the physical parameters in the model.

The time interval t and the activation volume b are larger

than for the description of slippage through (9). An indirect

way of determining the parameters associated with (10) is to

assume that the parameters should be such that the physical

response of a continuum undergoing stress-induced disen-

tanglement be similar to the results of the Monte-Carlo

simulations of Refs. [19,20] where chain slippage is

considered. Their simulations, where disentanglement is a

culmination of many slip events, show that the primary

effect of chain slippage is loss in the stress carrying capacity

of the network. We choose tZ10K12 s and U0Z80 kcal/

mol and then look at uniaxial stress–strain response of the

material for various values of b. The value of the activation

energy is similar to the height of the energy barrier for

viscous flow of polycarbonate (see, Ref. [17]). Fig. 4 shows

that for bZ(3000 Å)3 rehardening is completely suppressed

and the material behaves like an elastic-perfectly plastic

solid immediately after the yield drop. On the other hand,

when bZ(625 Å)3 the rehardening is not suppressed at all

and the material behaves almost exactly like the non-

disentangling material shown in Fig. 3. For the PC-like

material used in this work, pertinent values of b that could

lead to lower rehardening lie between (625 Å)3 and

(3000 Å)3. The uniaxial response for materials with bZ
Fig. 4. Uniaxial stress–strain response of a PC-like material in tension, with

various values of b representing different disentanglement kinetics.
(1500 Å)3 and (1900 Å)3 are also shown in Fig. 4. It is seen

that in these cases the material rehardens slightly after the

yield drop and then, with progressive disentanglement,

softens at higher levels of strain. The value of b chosen for

this work is (3000 Å)3, and so, at a sufficiently high stress

level, the material does not reharden at all. By opting for this

value of b, we have chosen the fastest possible rate of stress-

induced disentanglement. The response of the material for

this value of b matches with that obtained by Ref. [19] for a

material where chain slippage was permitted (Fig. 2 of their

paper).

It should be noted that in the continuum approach

adopted in this work, the rate of disentanglement is

intimately related to the equivalent back stress beq. While

this is an obvious first step towards understanding the

mechanics of growth of a craze fibril, a more detailed

(perhaps atomistic) study is needed to uncover all aspects of

this process.
4. Unit cell model of a craze

In order to arrive at a numerically tractable model for

craze growth, the model presented in Fig. 1(b) is further

simplified. Following Ref. [16], we assume that the craze is

much longer than it is thick and that the distribution of

primitive fibrils can be approximated by a hexagonal array

of fibrils, see Fig. 5(a), with a mean spacing D0Z2w. The

behaviour of each fibril can then be represented to good

accuracy by an axisymmetric cell containing a single fibril,

as shown in Fig. 5(b). Our calculations start from the

geometry of a primitive fibril, as defined in Fig. 5(c), where

we choose to express all dimensions in terms of the original

midriff fibril radius R0: The half thickness of the craze is LZ
4R0 and the half spacing of the fibrils is wZ2R0. With the

coordinates as indicated in Fig. 5(c), the displacement

boundary conditions for the unit cell are

u1ð0; x2; tÞZ u1ðw; x2; tÞZ 0

u2ðx1; 0; tÞZ 0; u2ðx1;L; tÞZ _Dt

with _D the prescribed widening rate of the craze (constant in

time, t). All results presented in Section 5 are for
_D=R0Z3:6 sK1.

Note that uniform displacements are prescribed at the top

of the cell, x2ZL, in order to represent the large bulk

volume on either side of the craze. The resulting stress

distribution, s22(x1, L), will not be uniform, and S22 denotes

its average. As we do not actually model the nucleation of

the fibrils, neither the radius R0 of the initial, primitive fibril

nor the state of the material in our initial configuration are

known. The value R0 is somewhat arbitrary, but at the same

time it is a key length scale in the model; we will later vary

its value to investigate its effect. Also, a primitive fibril in

reality will have its molecules oriented to some extent in the



Fig. 5. (a) Idealised distribution of primitive fibrils. (b) A cross-sectional

view of the idealised craze structure along the cut in (a). (c) The details of

the axisymmetric computational domain representing a single fibril.
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direction of stretching, so that the disentanglement is less

likely inside the primitive fibril. In our model, we attempt to

mimic the effect of this by assuming that the material in the

initial configuration of the primitive fibril has randomly

oriented molecular strands, but that disentanglement is only

potentially possible in the region x2R(wKR0), i.e. the

hatched region in Fig. 5(c). Hence, it is the region above the

dome of the craze where the active zone can form. This is

consistent with findings by, e.g. Ref. [5] that this region has

a lower entanglement density than the bulk and behaves

almost like a non-Newtonian fluid. The analyses are done

within the framework of large deformation finite element

method, using the constitutive model outlined in Section 3.

Since the objective of this work is to qualitatively assess
the effect of various material parameters on the process of

craze growth and failure, no attempt is made to model a

particular polymeric material. The basic material properties

are those given in Table 1. With NZ2.8, this PC-like

material has a very high entanglement density, but analyses

with other values of N have been performed as well. It

should be noted that as nN is held constant, a larger N (larger

number of statistical segments between entanglements)

implies a smaller n and therefore a lower entanglement

density. Entanglement density affects the rehardening

response of the material and higher entanglement density

leads to stronger rehardening. The values of N used in the

analyses to be reported in Sections 5 and 6 are 2.8, 4, 12 and

30. The corresponding values of CRZnkT at room

temperature are 15.8, 11.1, 3.7 and 1.5 MPa, respectively.

The values of CR in turn correspond to initial strand

densities n0Zn(tZ0) ranging from 0.36 to 3.8 nmK3, which

are close to strand densities observed in commercial

polymers, see Ref. [24]. All other material parameters are

kept constant.
5. Results

5.1. Distribution of plastic activity and strand density

Fig. 6 pertains to the material with the highest

entanglement density, i.e. NZ2.8. Fig. 6(a) shows the

distribution of plastic strain rate at two stages of craze

widening, namely D/R0Z0.5 and 1.5. The relative strand

density n/n0 at the same stages of widening are shown in

Fig. 6(b). The band of localised plastic strain rate in

Fig. 6(a) starts at the midriff (x1Z0) and travels upwards

with increasing widening. The band is accompanied by a

region of high stresses ahead of it and leaves behind highly

stretched material. Consequently, as the localisation band

approaches the craze-bulk interface, the high stresses trigger

off the disentanglement process. This is evident even in the

first snapshot of Fig. 6(b), for D/R0Z0.5, where the region

with n/n0!1 is seen to form just ahead of the shear band.

The zone of disentanglement spreads rapidly across the

width of the cell and at D/R0Z1.5, almost the whole craze-

bulk interface is bridged by disentangled material (n/n0!1).

It should be kept in mind that only the region above the

craze dome in the undeformed configuration is allowed to

disentangle. Nevertheless, it is seen from Fig. 6(b) that the

region with n/n0!1 has caved into the stretched fibril. This

indicates that material that was above the fibril in the initial

configuration has been drawn into the fibril. This

observation is similar to that of Kramer and Berger [15]

who noted that minute uniformly distributed gold particles

in a polymeric sample moved from the craze-bulk interface

into the fibrils as they stretched.

The effect of initial entanglement density is demon-

strated in Fig. 7 for three stages of widening, D/R0Z0.5, 1.5

and 5. Evidently, a fibril in a material with a higher value of



Fig. 6. Contours of (a) plastic strain rate and (b) relative strand density at D/R0Z0.5 and 1.5 for a polymer with high entanglement density (NZ2.8).
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N can sustain much higher levels of stretch than a material

with low N. For a higher value of N, the band of localised

shearing rate moves up slowly relative to the fibril and so the

widening D/R0 at which large scale disentanglement sets in

is larger. It is seen from Fig. 7(b) that at a widening of

D/R0Z1.5 the disentangled region is much smaller

compared to the material with NZ2.8, cf. Fig. 6(b). At a

much larger widening of D/R0Z5, however, the whole of

the craze-bulk interface has finally been bridged, and a very

long and slender fibril has been formed. Henkee and Kramer
[14] have observed that polymers with low entanglement

densities are more prone to crazing than materials with

higher entanglement densities. This is consistent with the

results reported above, where, while keeping nN constant,

the results in Fig. 7 are for a lower entanglement density

than in Fig. 6. A fibril in a material with low entanglement

density (like the one in Fig. 7) can be stretched much more

before large scale disentanglement occurs at the craze-bulk

interface. Longer fibrils imply wider and, hence, more

prominently visible crazes.



Fig. 7. Contours of (a) plastic strain rate and (b) relative strand density at D/R0Z0.5, 1.5 and 5.0 for a polymer with low entanglement density (NZ12.0).
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5.2. Overall widening response

The overall stress-widening responses, i.e S22/s0 as a

function of D/R0, for various values of N are presented in

Fig. 8. The overall response for the case with NZ2.8 shows

considerable hardening at D/R0Z0.5, when disentangle-

ment at the craze-bulk interface has already been triggered.

At D/R0Z1.5, when the whole of the craze-bulk interface

has been bridged by disentangled material, the overall
response actually begins to drop with increasing stretch. The

same overall characteristics are seen for the materials with

NZ4 and 12, but the hardening is seen to be lower and to set

in at higher levels of widening D/R0. For the material with

NZ4, the stretch at which the stress starts to drop is D/R0Z
1.7 and for the material with NZ12, this is D/R0Z4.7. As

for NZ2.8, the drop in the overall stress corresponds to

large-scale disentanglement at the craze-bulk interface and

indicates that the whole of the interface has been bridged by



Fig. 8. Overall stress-widening response of the fibril with different values of

N. Analyses pertain to an initial configuration with R0Z0.5w. Open circles

indicate the deformation stages in Fig. 6 while filled circles indicate those in

Fig. 7.

Fig. 9. Overall stress-widening response of the fibril with different values of

N. Analyses pertain to an initial configuration with R0Z0.75w.
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disentangled material. The situation is somewhat different

for the material with NZ30. In view of the corresponding

very low initial entanglement density, the material has a

much lower rehardening response and as a result, the stress

carrying capacity of the fibril is considerably lower than for

the other materials shown in Fig. 8. Such low stress levels at

the craze-bulk interface do not lead to any significant

disentanglement at the craze-bulk interface and the overall

stress rises slowly but monotonically with imposed

widening. At such large values of N, the widening required

to cause large scale disentanglement would be enormously

large and remeshing at the midriff would be necessary in

order to continue the calculations to those high levels of

widening. This is not attempted in this work.

Rottler and Robbins [18] and Baljon and Robbins [4]

have carried out molecular dynamics simulations of craze

growth. They assumed a coarse-grained bead-spring model

of the polymer and studied flexible as well as semi-flexible

polymer chains having varying (but low) entanglement

densities. For chains with larger molecular weights, the

overall response obtained by Ref. [18] is qualitatively quite

similar to that in Fig. 8. They obtain a region with almost

constant stress before the crazes start to harden, quite akin

what is seen for the case with NZ30.

The craze widening stress for a particular value of N

depends on the initial fibril diameter. In order to assess the

effect of this, we have repeated the calculations for the same

N-values but with a thicker primitive fibril: R0Z0.75w. The

overall response of these four materials, as shown in Fig. 9,

reveals that the primary effect of increasing the initial fibril

radius is, as expected, to increase the craze widening stress.

The yield drop in the overall stress commences at a lower

value of D/R0 than for the thinner initial fibril.

However, the stress drop itself is lower for larger R0. For
the material with NZ2.8, the yield drop is almost

imperceptible when R0Z0.75w.
5.3. Stress distributions inside the fibril

In this subsection, we focus on the distribution of normal

stress at the midriff A–A 0 and above the dome of the craze,

B–B 0 as defined in the inset of Fig. 10. Both stresses are

plotted against the undeformed coordinates x1/R0 and x2/R0,

respectively. Fig. 10(a) shows the normal stress s22 at the

midriff for the material with NZ2.8 at two stages of

wideningD/R0Z0.5 and 1.5, which correspond to the stages

in Fig. 6. It is seen that close to the free surface, a thin region

of very high stress develops at the midriff. This represents

the material with highly stretched molecular chains that

have locked. Towards the center line of the fibril, the

stresses drop considerably and stay almost constant.

The normal stress s11 along B–B 0, i.e. in the dome

between two neighbouring fibrils, are shown in Fig. 10(b).

At D/R0Z0.5, the shear bands have not reached the craze-

bulk interface and so the stresses on B–B have not been able

to rise much. However, as the shear bands arrive at the

interface between the craze and the bulk, not only do the

stresses rise considerably, but also disentanglement is

triggered. As a consequence, the stress levels at D/R0Z
1.5 are much higher except close to the top of the dome due

to the disentangled zone. Hence, at x2/R0x1.4, the stress

reaches a peak of s11/s0x0.91 and then drops to around s11/

s0Z0.5 at x2/R0Z1. The region 1%x2/R0%1.4 roughly

gives a measure of the height of the active zone above the

craze dome. Qualitatively similar stress distributions were

found in materials with higher values of N. These results are

significant because it has been postulated by, e.g. Ref. [15],

that stresses along B–B 0 may cause chains to stretch and

break or to get pulled out, which in turn might be a

mechanism by which the tip of the dome moves upwards.



Fig. 10. Variation of (a) the normal stress s22 with x1 along the midriff A–A0

and (b) the normal stress s11 with x2 along B–B0 for NZ2.8.
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However, in view of the rather low stresses along B–B 0, this

seems unlikely.
Fig. 11. The evolution of the midriff radius RmidZR(x2Z0) with D/R0 for

various values of N. The initial fibril radius is R0Z0.5w. The symbols for

NZ2.8 and NZ12 indicate the stages depicted in Figs. 6 and 7,

respectively.
6. Discussion

The objective of this work, as mentioned in Section 1, is

to explain some of the key experimental observations

regarding crazing using a relatively simple continuum

model. In order to be able to relate to experimental findings,

the effect of the rather unrealistic initial state on the

subsequent deformation has to be carefully assessed. In

other words, it needs to be established that starting from an

isotropic cylindrical unit cell containing an initial fibril of R0

(a configuration which may never occur in reality in a glassy

polymer) it is possible to end up with a deformed

configuration that resembles a mature craze fibril. A

possible definition of a mature fibril can be formulated on
the basis of Ref. [15] experimental observation that the

volume fraction vf at any point along the mature fibril in the

longitudinal (x2) direction remains almost constant as the

craze widens. According to this observation, the quantity

(w/R(x2))
2, where R(x2) is the radius of the fibril at x2, should

remain independent of x2 (the fibril half-spacing w appears

here only for dimensional reasons). A special case is the

midriff x2Z0 with radius Rmid. To verify whether (w/Rmid)
2

remains constant, Fig. 11 shows the evolution of the midriff

radius Rmid/R0 with craze width D/R0 for various values of

N. Initially, Rmid decreases with D because of elastoplastic

contraction of the primitive fibril, but from around D/R0Z
0.5, the rate of decrease of the radius slows down

considerably. This appears as the rather sharp ‘knee’ in all

curves in Fig. 11. This is due to the fact that a layer of highly

stretched ‘locked’ material forms at the free surface around

this value of the width. Even though the thickness of the

‘locked’ shell varies with the initial entanglement density, it

makes the fibril very stiff and hence resistant to further

lateral contraction. Thereafter, the radius at the midriff

remains almost constant. This constant value of the radius,

however, is smaller for lower entanglement density or

increasing value of N.

The fact that the radius becomes constant at a sufficiently

large craze width is intimately connected to the disen-

tanglement at the craze-bulk interface. This is illustrated for

NZ2.8 in Fig. 12, by comparing the previous results with

midriff evolution when disentanglement is suppressed; in

that case, the radius at the midriff does not attain constancy

but continues to decrease. However, the ‘knee’ in the

evolution of the radius occurs at the same craze width for

both cases. Hence, the knee is a result of the locking of

molecular chains while the attainment of constancy is

related to the formation of the softer, disentangled active



Fig. 12. Effect of disentanglement on the evolution of the midriff radius

Rmid for a polymer with NZ2.8.

S. Basu et al. / Polymer 46 (2005) 7504–7518 7515
region at the craze-bulk interface which effectively shields

the rest of the fibril from further deformation.

The craze width at which the ‘knee’ develops in Fig. 11

can be considered to be the point at which the unit cell starts

behaving like a mature craze fibril. In the analyses with

R0Z0.75w, shown in Fig. 13, the ‘knee’ in the Rmid–D plots

is less sharp than for the cases with R0Z0.5w, Fig. 11. When

the attainment of a constant value of Rmid is taken as the

condition for a fibril to be ‘mature’, then (except for the case

with NZ30) significant hardening takes place (Fig. 8), even

in a mature fibril. For R0Z0.75w, the fibril with the highest

entanglement density, (i.e. the one with NZ2.8), behaves in

a rather brittle manner in the sense that it fails almost as

soon as it attains maturation.

Assuming plastic incompressibility of the fibril material,

the volume fraction vf at any cross-section x2 can be related

to the average stretch l at that cross-section through lZ1/vf.
Fig. 13. The evolution of the midriff radius Rmid/R0 with D/R0 for various

values of N. The initial fibril radius is R0Z0.75w.
Using this, the reciprocal of the volume fraction can be

written as

lðx2ÞZ
w

Rðx2Þ

� �2

(11)

and gives a measure of the average stretch over the radius at

x2. The variation of l as a function of x2/R0 is shown in

Fig. 14. The largest value of l is found at the midriff (x2Z0)

and it decreases as we move towards the craze-bulk

interface. This is in agreement with experimental results

presented by Donald and Kramer [10], in particular their

Fig. 2. However, in their experimental results, the stretch

shows a spike at the midriff and drops rapidly as one moves

towards the craze-bulk interface. The gradual drop in the

values of stretch seen in Fig. 14 is probably an artifact of the

idealised fibril structure adopted in this work (Fig. 1). In

Fig. 15, we plot the value of l(x2Z0) based on the minimum

values of RmidZR(x2Z0) (Fig. 11) against lmaxZ
ffiffiffiffi
N

p
for

R0Z0.5w. The solid line is a linear fit to the computed

points for R0Z0.5w, and shows that l scales almost linearly

with lmax. The direct proportionality between l and lmax has

been observed experimentally by Kramer and Berger [15]

and co-workers. In this work, we have been able to derive it

starting from a constitutive description of the polymer and a

simple model of a craze fibril. It should be noted, however,

that the slope of the line in Fig. 15 is larger than unity, while

Kramer and Berger [15] observe that lxlmax. The slope is a

consequence of the initial volume fraction in the unit cell

and hence of R0. To prove this contention, Fig. 15 also

shows the results for R0Z0.75w and the same values of N

(dashed line), which has a slope much closer to unity. We

have already argued that our model requires specification of

R0 because we neglect the craze initiation process. In reality,

the diameter of the primitive fibril at the start of the drawing

process as modelled here is a consequence of the precise
Fig. 14. The average stretch l(x2), defined by (11), along the fibril at two

stages of widening, for a polymer with NZ2.8.



Fig. 15. Average stretch l, according to (11), at the fibril’s midriff versus

the material limit stretch lmaxðZ
ffiffiffiffi
N

p
Þ for initial configurations with R0Z

0.5w and R0Z0.75w.
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initiation process; circumstantial evidence from the results

found here, suggests that this diameter is probably quite

close to the mean fibril spacing.

In addition to providing insight into the craze widening

process itself, the computations reported here can help the

development of traction-separation laws to be used in

cohesive zone models for crazing in a glassy polymer. Thus,

the cohesive zone traction-separation relation can be

derived from the overall response computed from the

present model, e.g. as shown in Figs. 8 and 9. As the present

results were not available at the time, Estevez et al. [12]

have adopted a phenomenological formulation in which the

craze widened by a rate-dependent, non-hardening plastic

deformation process, much like the bulk material, until a

critical opening Dcrit was reached. While the question of a

suitable craze initiation criterion still remains open, the

present work offers refinement in two aspects. Firstly, it is

seen from Fig. 8 that beyond D/R0Z0.5, the overall stress

S22 is increasing with widening for all materials considered:

the fibrils harden with the hardening being dependent on N.

This means that even though the radius at the midriff has

already become constant due to the effect of disentangle-

ment (Fig. 11), the associated softening does not affect the

overall response until much larger widening. Secondly, the

value at which the craze fails, Dcrit, in the cohesive surface

law can be obtained from the present computations by

identifying Dcrit with the width at which the overall stress

starts to decrease, when the craze-bulk interface is bridged

by disentangled material. As seen in Fig. 16, which pertains

to the case with R0Z0.5w, Dcrit as well as the corresponding

overall peak stress S22 depend on the strand density n.

The fact that Dcrit decreases with n is consistent with the

experimental observation that polymers with low entangle-

ment density are more prone to crazing than the ones with

high entanglement density (see also discussion pertaining to
Figs. 6 and 7 in the previous section). The almost linear

relation between the craze failure stress and entanglement

density is consistent with experimental observations of Ref.

[24]. The analyses in Fig. 9 and the additional results in

Fig. 13 with a larger initial fibril radius R0 further underline

the fact that higher the entanglement density, more brittle

the craze should be. In other words, a highly entangled

polymer would fail quickly after attaining maturation. On

the other hand a lightly entangled polymer would give rise

to long fibrils that expend much energy in craze widening

before failing completely. This, however, does not mean

that polymers with high entanglement density are tougher

than ones with low entanglement density. Toughness is

determined by the energy required to make a crack

propagate and this is not only controlled by the energy for

crazing but also by the energy dissipated by shear yielding

around the moving crack tip. This is a different problem than

the one studied here, and can be addressed for instance with

a cohesive zone representation of crazing, as done by

Estevez et al. [12]. The only thing we can deduce from the

present work is that if crazing was the only mechanism

involved during failure, low entanglement density polymers

would consume more energy to fail. This is actually

observed by Henkee and Kramer [14] who used a polymer

with a fixed molecular weight but varied the crosslink

density.

It should be noted finally that Dcrit will depend to some

extent on the disentanglement kinetics, particularly the

value of b. However, in this qualitative study the parameters

U0 and b were kept constant. More in general, they should

be considered as ‘fitting parameters’, with their values

determined by comparison with experimental results or

obtained from atomistic simulations.

A further point merits mentioning at this stage. As

already elaborated, the role of beq in causing disentangle-

ment is a simple way of dealing with the complicated issue

of stress-induced disentanglement, which at the molecular

level requires reptative motion of chains through the

entanglement points. While this is, to the best of our

knowledge, the first work that is able to reproduce many of

the experimental findings of Kramer and co-workers

through a continuum model, some issues need further

investigation. Kramer and Berger [15] postulate that the

mechanism of craze growth is through the process of

disentanglement occurring ahead of the dome of the craze,

i.e. X2OR0. However, according to our model disentangle-

ment starts at the centerline, i.e. in between the craze stems

where beq attains high values earlier, and then propagates

towards the craze dome. Resolution of this issue requires a

simulation that includes the nucleation process, which is a

challenge at this stage.
7. Conclusions

A simplified axisymmetric model of a craze fibril has



Fig. 16. The craze width and stress at failure as a function of the initial strand density for various polymers, for the case R0Z0.5w.
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been used to numerically study the process of craze

widening leading to the formation of a mature fibril. The

material model uses a continuum theory for rate-dependent

yield, with softening and subsequent rehardening, sup-

plemented with a simple model for stress-induced disen-

tanglement. Thus, the model provides a refinement of the

theories of Kramer and Berger [9,15]. With physically

reasonable parameter values, it predicts the following,

experimentally known characteristics of crazing:

† Due to disentanglement, the material near the craze-bulk

interface softens, thus forming the so-called active zone

above a fibril.

† In the course of fibril elongation, material from the bulk

is drawn into the craze.

† Polymers with lower entanglement density give rise to

longer and more slender fibrils. Consequently, polymers

with lower entanglement density have higher values of

critical opening at failure but need lower levels of overall

stress. A low entanglement density polymer absorbs

more energy in the crazing process than a highly

entangled one.

† Disentanglement at the craze-bulk interface causes the

fibril diameter to reach a constant value.

† The average fibril stretch l at the midriff cross-section

scales linearly with the maximum stretch between two

entanglements, lmax.

Quantitative comparison with experimental results

awaits the experimental determination of the parameters

in the model.
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